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A sharpened version of Carleman’s inequality is proved. This result unifies and

generalizes some recent results of this type. Also the ‘‘ordinary’’ sum that serves as

the upper bound is replaced by the corresponding Cesaro sum. Moreover, a

Carleman-type inequality with a more general measure is proved and this result may

also be seen as a generalization of a continuous variant of Carleman’s inequality,

which is usually referred to as Knopp’s inequality. A new elementary proof of

(Carleman–)Knopp’s inequality and a new inequality of Hardy–Knopp type is

pointed out. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

Carleman’s inequality appeared in paper [5] on quasi-analytic functions.
In that paper, Carleman gave necessary and sufficient conditions for
functions not to be quasi-analytic. As a lemma (stated as a theorem) for one
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of the implications, Carleman proved that we, in fact, have

X1
k¼1

k ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia1a2 � � � ak
p

5e
X1
k¼1

ak ; ð1:1Þ

if ðakÞ
1
k¼1 is a sequence of real positive numbers and the sum on the right-

hand side is convergent. The constant e is sharp.
Since Carleman published his results inequality (1.1) has been discussed,

applied and generalized by several authors. Here, we just mention the
following, all of which to some extent have guided us in our investigation:
Hardy [8, 9] G. P !oolya (see [4, p. 156]); Knopp [15] (see also [4, p. 487]);
Carleson [6]; Redheffer [22]; Cochran and Lee [7]; Heinig [11]; Henrici [12];
Love [16]; Bicheng and Debnath [3]; Alzer [1]; Bennett [2]; Ping and
Guozheng [21] and Pecaric and Stolarsky [18]. Let us just mention that some
applications to continued fractions are given in [12] and that further
references and information can be found in the recent interesting review
article [18].

In this paper, we shall also consider the continuous analogue of (1.1),
namely the inequality

Z 1

0

exp
1

x

Z x

0

log f ðtÞ dt
� �

dx5e
Z 1

0

f ðxÞ dx; ð1:2Þ

which usually is referred to as Knopp’s inequality (cf. [15, 10, p. 250]), but
note that Hardy claims that (1.2) is due to P !oolya. Also, this inequality has
been generalized in a number of ways and here we just mention the fairly
recent papers [13, 14, 17, 19, 20] and the references given in these papers.

In this paper, we state, prove and discuss a refinement and generalization
of (1.1) (see Theorem 2.1) which, in particular, unifies and generalizes some
recent results in [1, 3, 21]. For the proof of Theorem 2.1 we also prove a
crucial lemma of independent interest because it may be regarded as a new
generalization of the arithmetic–geometric mean (A–G) inequality.

We also prove a new (Carleman–Knopp type) inequality (Theorem 3.1)
with a more general measure involved so that this new inequality contains
both (1.1) and (1.2).

In fact, it is easy to see that (1.2) implies (1.1) (cf. our Section 4). In
Section 4 we also present a new proof of (1.2) and this idea makes it possible
to state a new Hardy–Knopp inequality (see Theorem 4.1).

Conventions: In this paper ðakÞ
N
k¼1; N 2 Zþ; denotes a sequence of

nonnegative numbers and ðank Þ
N
k¼1 denotes the nonincreasing rearrangement

of ðakÞ
N
k¼1: It will be tacitly understood that we have rearranged a sequence

all over again for different values of N :
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2. A SHARPENING OF CARLEMAN’S INEQUALITY

We begin with proving a generalization of the following well-known
refinement of the A–G inequality (see [4, p. 98]):

a1 þ a2 þ � � � þ aN
N

� N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2 � � � aN

p
5

1

N

� ffiffiffiffiffiffiffiffiffi
amax

p
�

ffiffiffiffiffiffiffiffiffi
amin

p �2

; ð2:1Þ

N 2 Zþ; where amax ¼ max14i4N faig; amin ¼ min14i4N faig:

Lemma 2.1. Let xi; i ¼ 1; 2; . . . ;N ; be positive real numbers. We have

A� G ¼
x1 þ x2 þ � � � þ xN

N
� N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2 � � � xN

p
5

1

N

X½N=2�

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnN�kþ1

q
�

ffiffiffiffiffi
xnk

q� 	2

;

ð2:2Þ

where ðxnk Þ
N
k¼1 is the nonincreasing rearrangement of ðxkÞ

N
k¼1:

Proof. Suppose that N is odd; the case when N is even is similar or even
simpler. By the A–G inequality, we have

G ¼N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2 � � � xN

p
¼
�
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n
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�
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q
�

ffiffiffiffiffi
xnk

q� 	2

;

and the proof is complete. ]

Remark 1. By estimating the sum on the right-hand side by the first term
we obtain (2.1).

We now use Lemma 2.1 to prove our sharpening of Carleman’s
inequality.

Theorem 2.1. Let ðakÞ
1
k¼1 be a sequence of positive real numbers and let

xi ¼ iaið1 þ 1
iÞ
i; i ¼ 1; 2; . . . :
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Then with Gk :¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1a2 � � � ak

p
and lk :¼

P½k=2�
i¼1

� ffiffiffiffiffiffiffiffiffiffiffiffi
xnk�iþ1

p
�

ffiffiffiffiffi
xni

p �2

we

have
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4
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1 �
k
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� �
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1

k

� �k

ak ð2:3Þ

for every N 2 Zþ:

Proof. We apply Lemma 2.1 with xi :¼ iai and obtain

k
ffiffiffiffi
k!

p Yk
1

ai

 !1=k

¼
Yk
i¼1

ðiaiÞ
1=k4
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:

Thus
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þ
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iai ¼
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1 �
k

N þ 1

� �
ak : ð2:4Þ

By replacing ak with akð1 þ 1
kÞ
k ; k ¼ 1; 2; . . . ;N ; in (2.4) this inequality

coincides with (2.3), since, ðk þ 1Þk ¼ k!
Qk

i¼1ð1 þ 1
iÞ
i: ]

Remark 2. By letting N ! 1 and using the estimate lk50; we obtain
the classical Carleman inequality (1.1) for a convergent sum

P1
1 ak : It is

then obvious that we obtain a strict inequality, since it is only when all
numbers are equal we get equality in the A–G inequality, but then the right-
hand side diverges.

Remark 3. Improvements with e replaced by ð1 þ 1
kÞ
k in Carleman’s

inequality have been known since at least 1967, see e.g. [22] or [18, p. 53].
Moreover, the factor 1 � k

Nþ1
in our formulation means that on the right-

hand side the ‘‘usual’’ sum has been replaced by the Cesaro sum, i.e., the
partial sums have been averaged arithmetically. This is of course strictly
smaller than the ordinary sum because here the summands are nonnegative.

Corollary 2.1. Let ðakÞ
1
k¼1 be a sequence of positive real numbers and let

xi ¼ iai; i ¼ 1; 2; . . . :
Then, with Gk and lk as in Theorem 2.1, we have

1

e

XN
k¼1

Gk þ
XN
k¼1

lk
kðk þ 1Þ

5
XN
k¼1

1 �
k

N þ 1

� �
ak ; ð2:5Þ

for every N 2 Zþ:
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Proof. Apply Theorem 2.1 with ai replaced by aið1 þ 1
iÞ
�i and use the

estimate

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYk

i¼1
1 þ

1

i

� �i
s

5e

in (2.3) and the result follows. ]

Remark 4. By letting N ! 1 in (2.5) we obtain

1

e

X1
k¼1

Gk þ
X1
k¼1

lk
kðk þ 1Þ

5
X1
k¼1

ak ;

when the right-hand side is convergent. This is a sharper statement than that
of Alzer [1]. The Alzer result is obtained if lk (which is a sum) is replaced by
the first term of lk :

Corollary 2.2. Let ðakÞ
1
k¼1 be a sequence of positive real numbers and

let xi ¼ iaið1 þ 1
iÞ
i; i ¼ 1; 2; . . . : Then, with Gk and lk as in Theorem 2.1, we

have
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lk
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5e
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5

0
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1
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1 �
k
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� �
ak ð2:6Þ

for every N 2 Zþ:

Proof. By using Lemma 1 in [21] we have that

1 þ
1

k

� �k

5e 1 þ
1

k þ
1

5

0
B@

1
CA

�1=2

;

so (2.6) follows from (2.3). ]

Remark 5. By letting N ! 1 in (2.6) for a convergent right-hand side
we obtain

X1
k¼1

Gk þ
X1
k¼1

lk
kðk þ 1Þ

5e
X1
k¼1

1 þ
1

k þ
1

5

0
B@

1
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�1=2

ak : ð2:7Þ

This is a sharpened version of the inequality stated in [21, Theorem 1]. In
fact, this inequality is obtained by just using the estimate lk50 in (2.7).
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Remark 6. By arguing as above we find that Theorem 2.1 also
implies

X1
k¼1

Gk þ
X1
k¼1

lk
kðk þ 1Þ

5e
X1
k¼1

1 �
1

2ðk þ 1Þ

� �
ak : ð2:8Þ

This is a sharpened version of the inequality stated in [3, Theorem 3.1]. Their
result is obtained from (2.8) by replacing all lk with 0:

3. A CARLEMAN–KNOPP INEQUALITY

In this section we prove an inequality which, in particular, generalizes and
unifies the two inequalities (1.1) and (1.2).

We assume that MðtÞ is a right-continuous and nondecreasing function on
½0;1Þ: Moreover, let gðtÞ be a continuous and increasing function on ð0;1Þ
and let GðxÞ ¼

R x
0
gðtÞ dt: We define the function gn by

gnðMðxÞÞ ¼
gðMðxÞÞ if M is continuous at x;

GðMðxþÞÞ � GðMðx�ÞÞ
MðxþÞ �Mðx�Þ

elsewhere:

8<
:

In particular, we obviously have that

Z x

0

gnðMðtÞÞ dMðtÞ ¼ GðMðxÞÞ ð3:1Þ

and

gnðMðxÞÞ4gðMðxÞÞ: ð3:2Þ

Our Carleman–Knopp inequality reads as

Theorem 3.1. Let MnðtÞ :¼ expðlognðMðtÞÞÞ: Then, for any B 2 Rþ;Z B

0

exp
1

MðxÞ

Z x

0

log f ðtÞ dMðtÞ
� �

dMðxÞ

þ e
Z B

0

1 �
MnðxÞ
MðxÞ

� �
f ðxÞ dMðxÞ4e

Z B

0

1 �
MnðxÞ
MðBÞ

� �
f ðxÞ dMðxÞ:



KAIJSER, PERSSON, AND ÖBERG146
Proof. By using (3.1) with gðtÞ ¼ log t; Jensen’s inequality and Fubini’s
theorem, we find that

Z B

0

exp
1

MðxÞ

Z x

0

log f ðtÞ dMðtÞ
� �

dMðxÞ

¼
Z B

0

exp
1

MðxÞ

Z x

0

½logn MðtÞ þ log f ðtÞ � logn MðtÞ� dMðtÞ
� �

dMðxÞ

¼
Z B

0

exp
1

MðxÞ

Z x

0

ðlogn MðtÞ þ log f ðtÞÞ dMðtÞ
�

�
1

MðxÞ

Z x

0

logn MðtÞ dMðtÞ
�
dMðxÞ

¼
Z B

0

e
MðxÞ

exp
1

MðxÞ

Z x

0

ðlogn MðtÞ þ log f ðtÞÞ dMðtÞ
� �� �

dMðxÞ

(here we use Jensen’s inequality)

4
Z B

0

e
MðxÞ

1

MðxÞ

Z x

0

expðlogn MðtÞÞf ðtÞ dMðtÞ
� �

dMðxÞ

¼ e
Z B

0

MnðtÞf ðtÞ
Z B

t

1

ðMðxÞÞ2
dMðxÞ

� �
dMðtÞ

¼ e
Z B

0

MnðtÞf ðtÞ
1

MðtÞ
�

1

MðBÞ

� �
dMðtÞ

¼ e
Z B

0

MnðtÞ
MðtÞ

� 1

� �
f ðtÞ dMðtÞ þ e

Z B

0

1 �
MnðtÞ
MðBÞ

� �
f ðtÞ dMðtÞ;

which gives the desired inequality. ]

Corollary 3.1. Let Mð1Þ ¼ 1: ThenZ 1

0

exp
1

MðxÞ

Z x

0

log f ðtÞ dMðtÞ
� �

dMðxÞ

þ e
Z 1

0

1 �
MnðxÞ
MðxÞ

� �
f ðxÞ dMðxÞ5e

Z 1

0

f ðxÞ dMðxÞ; ð3:3Þ

whenever the integral on the right-hand side converges.

Proof. Except for the strict inequality sign in the second row of (3.3) the
proof follows by just letting B ! 1 in Theorem 3.1. The strict inequality is
obvious because in order to have equality in the (Jensen) inequality in the
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proof of Theorem 3.1 we must have f ðtÞ ¼ constant a.e., but this is not
possible when B ! 1: ]

Remark 7. By applying Corollary 3.1 with

MðxÞ ¼
1=2; 04x41;

k; k4x5k þ 1; k ¼ 1; 2; . . . ;

8<
:

we obtain (a slight generalization of) (1.1). Moreover, if MðxÞ ¼ x; then (3.3)
just coincides with (1.2).

We give a single example for the case Mð1Þ51:

Example 3.1. Let MðxÞ ¼ 1 � e�x in Theorem 3.1 and let B ! 1: Then
we obtain the inequalityZ 1

0

exp
ex

ex � 1

Z x

0

e�t log f ðtÞ dt
� �

e�x dx4e
Z 1

0

f ðxÞe�2x dx:

4. CONCLUDING REMARKS AND RESULTS

Remark 8. It is easy to see that Knopp’s inequality (1.2) implies
Carleman’s inequality (1.1). In fact, apply (1.2) with f ðxÞ ¼ ak ; x 2 ½k �
1; kÞ; k ¼ 1; 2; . . . : Then, by making some straightforward calculations and
estimates, we see that (1.2) Carleman implies the inequality

X1
k¼1

k ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffia1a2 � � � ak
p

5e
X1
k¼1

ak : ð4:1Þ

The crucial estimate is

Z kþ1

k
exp

1

x

Xk
i¼1

log ai þ
x� k
x

log akþ1

 !
dx

5
Z kþ1

k
exp

1

k þ 1

Xkþ1

i¼1

log ai

 !
dx ¼

Ykþ1

i¼1

ai

 !1=ðkþ1Þ

;

which holds for each nonincreasing sequence and it is obviously sufficient to
prove (1.1) or (4.1) for such sequences.

Remark 9. The original proof of Carleman was based on the Lagrange
multiplier method (see [5]). Other proofs are based on Hardy’s inequality

(see [9, p. 156; 10]), or various formulations of the A–G inequality (see e.g.
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[9, p. 77; 10, p. 249; 7, p. 24]), or convexity (see [6]). Still some other methods
of proof are presented in [18]. Here, we shall present a new and in our opinion
more elementary proof which also only depends on a convexity argument.

Proof of (1.2). First, we note that by replacing f ðtÞ with f ðtÞ=t in (1.2)
we find that (1.2) can be rewritten in the equivalent}and in our opinion
more natural}formZ 1

0

exp
1

x

Z x

0

log f ðtÞ dt
� �

dx
x
5
Z 1

0

f ðxÞ
dx
x
: ð4:2Þ

In order to prove (4.2) we just use the fact that the function f ðuÞ ¼ eu is
convex and apply Jensen and Fubini’s inequalities to obtainZ 1

0

exp
1

x

Z x

0

log f ðtÞ dt
� �

dx
x
4
Z 1

0

1

x2

Z x

0

f ðtÞ dt
� �

dx

¼
Z 1

0

f ðtÞ
Z 1

t

1

x2
dx

� �
dt ¼

Z 1

0

f ðtÞ
dt
t
:

The strict inequality follows because in order to have equality in Jensen’s
inequality for almost all x it is necessary that f ðxÞ is constant almost
everywhere, but this contradicts the assumption thatZ 1

0

f ðxÞ
dx
x
51: ]

Remark 10. Our proof of Theorem 2.1 and hence of (1.1) was based on
the numbers xi with ai ¼ xi=i while the proof above may be seen as based on
the analogous fact that f ðxÞ is written in the form gðxÞ=x:

According to the proof above we find that the following Hardy– Knopp-

type inequality holds:

Theorem 4.1. Let f be a positive convex strictly increasing function on

ð0;1Þ: Then Z 1

0

f
1

x

Z x

0

f ðtÞ dt
� �

dx
x
4
Z 1

0

fðf ðxÞÞ
dx
x
: ð4:3Þ

Proof. Using our proof of (4.2) above, we see thatZ 1

0

f
1

x

Z x

0

f�1ðf ðtÞÞ dt
� �

dx
x
4
Z 1

0

f ðxÞ
dx
x
;
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where f�1 denotes the inverse of f: Now, replace f ðxÞ by fðf ðxÞÞ and (4.3)
follows immediately. ]

Remark 11. By choosing fðuÞ ¼ eu and f ðuÞ ¼ log gðuÞ we find that (4.3)
implies (4.2) and by choosing fðuÞ ¼ up we find that (4.3) implies Hardy’s
inequality in the particular form

Z 1

0

1

x

Z x

0

f ðtÞ dt
� �pdx

x
4
Z 1

0

f pðxÞ
dx
x
; p51; ð4:4Þ

which for the case p > 1 (after some straightforward calculations) can be
rewritten in the usual form

Z 1

0

1

x

Z x

0

gðtÞ dt
� �p

dx4
p

p � 1

� �pZ 1

0

gpðxÞ dx; p > 1; ð4:5Þ

where gðxÞ ¼ f ðxðp�1Þ=pÞx�1=p: Note that Hardy’s inequality written in form
(4.4) in fact also holds for p ¼ 1; but this has no meaning when it is written
in form (4.5).

Remark 12 (On the Sharpness in (2.6)–(2.8)). Let cn ¼ ð8 � e2Þ=ðe2 �
4Þ � 0:1802696 and consider the sequence

bk ¼ 1 þ
1

k

� �k

1 þ
1

k þ cn

� �1=2

:

We note that

b1 ¼ e and bk5e; for k ¼ 2; 3; 4; . . . ð4:6Þ

(because b25e and fbkg
1
2 is strictly increasing and bk ! e as k ! 1).

For this reason, we see from Theorem 2.1 that both (2.6) and (2.7) can be

improved by replacing the factor 1 þ 1

kþ1
5

� ��1=2

with 1 þ 1
kþcn

� 	�1=2
in these

inequalities.
We also note that (4.6) does not hold if cn is replaced by any smaller

number, so with this technique inequalities (2.6) and (2.7) cannot be further
improved.

Moreover, we note that

1 þ
1

k

� �k

5e 1 �
a
k

� 	
ð4:7Þ
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for all k when a41=2; but not when a > 1=2: Also, we have by Taylor
expansion

1 þ
1

k

� �k

¼ e 1 �
1

2k

� �
þ O

1

k2

� �
: ð4:8Þ

We can rewrite (4.8) into the form

1 þ
1

k

� �k

¼ e 1 �
1

2ðk þ 1Þ

� �
þ O

1

k2

� �
;

which means that the corresponding estimate in (2.8) cannot be further
improved only by using an estimate of form (4.7).
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